Overview of Renewable Energy & Electric Vehicle Development in China

Zechun Hu
Tsinghua University
zechhu@tsinghua.edu.cn

3/21/2017

Smart Grid Operation and Optimization Laboratory
1. Renewable Power Generation
2. Electric Vehicle Development
3. Electric Vehicle Charging Infrastructure
4. Our EV Related Research Work
Renewable Power Generation

- Installed capacity of wind and solar power generation increased very fast in the past six years
- **Wind power** ranks number one from year 2012
- Installed **solar power capacity** outnumbers Germany from year 2015
- Fast increasing renewable generation poses great challenges to power system operation, especially in the “Three North Parts” of China
Total accumulated installed capacity 2016
Serious wind spillage problem

<table>
<thead>
<tr>
<th>Year</th>
<th>Curtailment (billion kWh)</th>
<th>Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>20.8</td>
<td>17</td>
</tr>
<tr>
<td>2013</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>2014</td>
<td>13.3</td>
<td>8.5</td>
</tr>
<tr>
<td>2015</td>
<td>33.9</td>
<td>15</td>
</tr>
<tr>
<td>2016</td>
<td>49.7</td>
<td>17.1</td>
</tr>
</tbody>
</table>

2015 average curtailment rate = 15%
- >30% curtailment rate
- >20–29% curtailment rate
- >10–19% curtailment rate
- >1–9% curtailment rate

Source: http://www.nature.com/articles/nenergy201676/figures/1

Smart Grid Operation and Optimization Laboratory
Serious wind spillage problem

- Amount of wind energy spilled

<table>
<thead>
<tr>
<th>Year</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spilled energy (billion kWh)</td>
<td>20.8</td>
<td>15.0</td>
<td>13.3</td>
<td>33.9</td>
<td>49.7</td>
</tr>
<tr>
<td>Percentage (%)</td>
<td>17</td>
<td>11</td>
<td>8.5</td>
<td>15</td>
<td>17.1</td>
</tr>
</tbody>
</table>

Wind spillage in several provinces (2016)

<table>
<thead>
<tr>
<th>Province</th>
<th>Spilled energy (billion kWh)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gansu</td>
<td>10.3</td>
<td>43.1%</td>
</tr>
<tr>
<td>Xinjiang</td>
<td>13.7</td>
<td>38.4%</td>
</tr>
<tr>
<td>Ningxia</td>
<td>1.9</td>
<td>13.1%</td>
</tr>
<tr>
<td>Shaanxi</td>
<td>0.2</td>
<td>6.6%</td>
</tr>
</tbody>
</table>
Contents

1. Renewable Power Generation
2. Electric Vehicle Development
3. Electric Vehicle Charging Infrastructure
4. Our EV Related Research Work
Background for EV development

• Environment
  – Air pollution is serious, esp. in big cities

• Energy Security
  – More than half of the oil consumed is imported
  – Renewable energy generation

• Auto Industry
  – China is the biggest auto market
  – Promote the implementation of new technology
Efforts by Government and Results

- In Nov 2007, NRDC released “rules on the production admission administration of new energy automobiles”
- In Jan 2009, several departments and NRDC launched “Ten Cities and One Thousand EVs” program
- In June 2010, subsidy is provided for private EV buyers.
- In Feb, 2014, Beijing initiated a vehicle plate program for EVs only.
- Over 300% increase of EV vehicle registration in 2015 compared to 2014.

![Graph showing EV sales in thousands from 2013 to 2016.]

**Sales/Thousand**

<table>
<thead>
<tr>
<th>Year</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.6</td>
<td>83.9</td>
<td>331.1</td>
<td>507</td>
</tr>
</tbody>
</table>

Smart Grid Operation and Optimization Laboratory
EV production and sale

<table>
<thead>
<tr>
<th>Pure EV Passenger car</th>
<th>Sale/thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 2015</td>
<td>147</td>
</tr>
<tr>
<td>Year 2016</td>
<td>263</td>
</tr>
</tbody>
</table>

Sales in 2015

Sales in 2016

Source: China Association of Automobile Manufactures

Smart Grid Operation and Optimization Laboratory

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pure EV</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-15</td>
<td>3.5</td>
<td>3.325</td>
<td>3.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016-2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>2</td>
<td>2</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>150≤R&lt;250</td>
<td>5</td>
<td>4.75</td>
<td>4.5</td>
<td>4.5</td>
<td>3.6</td>
<td>3.6</td>
<td>2.7</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>R≥250</td>
<td>6</td>
<td>5.7</td>
<td>5.4</td>
<td>5.5</td>
<td>4.4</td>
<td>4.4</td>
<td>3.3</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td><strong>PHEV</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R≥50</td>
<td>3.5</td>
<td>3.325</td>
<td>3.15</td>
<td>3</td>
<td>2.4</td>
<td>2.4</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td><strong>FCEV</strong></td>
<td>-</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
## Cost comparison PHEV, BEV and conventional vehicle in Shanghai 2016

<table>
<thead>
<tr>
<th>Category</th>
<th>BYD Qin PHEV (NEV &gt;50km range)</th>
<th>BAIC EV200 BEV (NEV &gt;150km range)</th>
<th>Comparable conventional vehicle (BYD F3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price before subsidy</td>
<td>209,800 RMB (approx. 31200 USD)</td>
<td>208,900 RMB (approx. 28,000 USD)</td>
<td>65,900 RMB (approx. 9800 USD)</td>
</tr>
<tr>
<td>Purchase tax</td>
<td>0</td>
<td>0</td>
<td>3,295 RMB</td>
</tr>
<tr>
<td>National Subsidy</td>
<td>-24,000 RMB</td>
<td>-36,000 RMB</td>
<td>0</td>
</tr>
<tr>
<td>Local Subsidy</td>
<td>-12,000 RMB</td>
<td>-18,000 RMB</td>
<td>0</td>
</tr>
<tr>
<td>Number plate auction</td>
<td>0</td>
<td>0</td>
<td>Approx. 84,500 RMB</td>
</tr>
<tr>
<td><strong>Total customer costs</strong></td>
<td><strong>173,800 RMB</strong> (approx. 25800 USD)</td>
<td><strong>154,900 RMB</strong> (approx. 23100 USD)</td>
<td><strong>153,695 RMB</strong> (approx. 23,000 USD)</td>
</tr>
</tbody>
</table>

Source: NDRC et al., 2015; MOF et al., 2015; SMPG, 2016.

(Exchange rate RMB/EUR=0.136)
To Jan. 2016, the total number of public charging ports is 58,758 (AC 38,312, DC 12,101, Combo 8,345); private owned number is 50,241 (AC 50,233, DC 8).
Centralized charging and swapping stations

- **12,000** centralized charging and swapping stations are planned by 2020.

Category and target

- 3,850, public transportation charging
- 2,500, e-taxi services charging
- 2,450, sanitary and logistics charging
- 2,400, urban public charging
- 800, Intercity fast charging

Intercity fast charging network

Source: NDRC et al., 2015.
Distributed charging pillars

- **4.8 million** distributed charging pillars are planned by 2020.

Category and target

- 2.8 million, residential compounds
- 1.5 million, commercial areas
- 0.5 million, public parking areas

Source: NDRC et al., 2015.
Charging infrastructure implementation

Newly-built constructions rules (2016)

- **100%** parking lots in compounds should be enabled for charging installations (parking lot).
- **10%** parking lots in public constructions (larger than 20,000m²) have to equip with charging devices.

---

Short term solution

- Co-use power supply of illumination equipment, such as street light.

Long term goal

- Develop mechanical and multi-storey parking garages with charging facilities.

Source: MOHURD, 2015.
Nationwide development and provincial targets are planned.

- Deployment of charging infrastructure in Beijing:
  - The “public-private partnerships” is encouraged and subsidized with maximum 30% of total investment.
  - Regulated charging service fee is introduced and directly related to 92 octane gasoline price.

<table>
<thead>
<tr>
<th>Region</th>
<th>No. of province</th>
<th>Charging station target by 2020</th>
<th>Charging pillar target by 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration area</td>
<td>12</td>
<td>7,400</td>
<td>2.5 million</td>
</tr>
<tr>
<td>Demonstratio area</td>
<td>14</td>
<td>4,300</td>
<td>2.2 million</td>
</tr>
<tr>
<td>Promotion area</td>
<td>5</td>
<td>300</td>
<td>0.1 million</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>12,000</td>
<td>4.8 million</td>
</tr>
</tbody>
</table>

Source: GOSC, 2015; NDRC et al., 2015; BMCDR, 2015.
1. Renewable Power Generation

2. Electric Vehicle Development

3. Electric Vehicle Charging Infrastructure

4. Our EV Related Research Work
Research work overview

Integration of EVs into power system

Charging demand forecast

Temporal distribution

Temporal & spacial distribution

On system operation

On system planning

Impacts of EV charging on power systems

Coordinated charging strategies

Control strategies of V2G

Control Objectives

- Peak shaving and valley filling
- Frequency regulation
- Providing reserve
- With renewable generation

Optimal planning of charging facilities

Urban area

Highway network

Operation of charging facilities and market mechanism

Smart Grid Operation and Optimization Laboratory
Charging load forecast and facility planning

Spatial and temporal distribution of PEV charging load forecast

Charging load forecast

Charging station planning

Smart Grid Operation and Optimization Laboratory

Tsinghua University
Research work on coordinated charging
• Charging stations or parking lots with charging piles for PEVs
• The charging load and base load are connected to the distribution transformer
• Charging process of each EV is optimized to flatten the load profile and make more profit for the charging station while capacity constraint of the transformer is held
Smart Charging – multiple stations

- A schematic illustration of the distributed charging system in an urban area
- Proposed hierarchical control framework for PEV charging coordination across multiple stations or aggregators
- A charging load aggregation method is put forward considering real-world PEV charging and distribution transformer constraints
Smart Charging – Three Levels

- **Day-ahead Transmission**
  - Transmission Operator
  - Input:
    - Base load profile prediction
    - TOU electricity tariffs
  - Output: day-ahead referential charging curve

- **Distribution**
  - Municipal charging load aggregation
  - Distribution Operator
  - Input:
    - Distribution base load profile
    - TOU electricity tariffs
  - Output: Preferred charging power
  - Station charging load aggregation
  - Station Operator
  - Input: Customer’s demand

- **Real-time Station**
  - Station Operator
  - ...
V2G for Primary Frequency Control

- Objective and Constraints
  - Smoothing frequency fluctuation
  - Meeting Charging demands
    - Charging EVs
    - Holding battery SOC

- Our Solution Method
  - Frequency droop control
    - Responding frequency signal
    - Considering SOC level
  - Tradeoff between achieving charging demands and frequency droop control


Smart Grid Operation and Optimization Laboratory
Coordination of EV and renewables

- Coordinate with wind farm/PV plant, reduce the wind/solar curtailment
- Coordinate with distributed generation resources
- Application of EV in micro-grids (reduce the curtailment and secure system operation)

Smart Grid Operation and Optimization Laboratory
Coordination of EV and renewables

- From charging station to charging network
- From planning to operation

Coordinated EV charging: A key to open two locks!
Thank You!